全 4 件中 4 件 を表示しています
-
【リード機械学習エンジニア】低レイテンシーな機械学習システムでデータ駆動の意思決定を推進
事業概要 CARTA MARKETING FIRM は「クライアントの事業を進化させる」をミッションに、デジタルや広告に領域を限定せず、クライアントのあらゆるマーケティング課題に向き合っていく事業会社です。 CARTA MARKETING FIRM 開発局では、「自分たちで創って、自分たちで売る。」をビジネスコンセプトに、様々なマーケティング課題に対して、自らプロダクト開発を行うことでソリューションを提供し、クライアントの事業の進化を目指しています。自社プロダクトの1つとして、Demand Side Platform(以下、DSP)の開発を行っています。 自社プロダクトであるDSPは、認知獲得のためのブランディング広告や、成果に直結するパフォーマンス広告といった、マーケティングにおける様々なニーズに応えられる機能を提供しています。2019年のサイバー・コミュニケーションズ(CCI)との経営統合を期にブランディング広告領域への開発投資を積極的に行ってきましたが、現在はブランディング広告向けの機能が充実する中で、パフォーマンス広告領域への投資を行いさらなる事業成長を狙います。 募集背景 私たちは、データ駆動の意思決定をリードできる機械学習エンジニアを求めています。 パフォーマンス広告では、広告主に成果(アプリのインストール、商品の購入など)を還元する過程で、データ分析や機械学習が重要な役割を担います。ロジック開発は単なる技術的な取り組みではなく、ビジネス戦略そのものです。最適な入札価格の決定や効果的なクリエイティブの選択を自動化することで、プロダクトとしての優位性を確立します。 この分野では日々新しい手法が提案されており、それらを効果的に活用するには深い洞察が必要です。論文サーベイで得られた手法を自社プロダクトに適用するには、実際の広告リクエストや広告主の要望など、ビジネス背景を十分に考慮する必要があります。 これらを実現するために、技術力だけでなく、ビジネス感覚を持ち、組織や戦略に積極的に貢献できる方に来ていただきたいと思っています。 業務内容 リード機械学習エンジニアのミッションは大きく二つあります。 ▼ビジネスの生命線を担う 機械学習モデルの性能向上は、ビジネスに直接的な影響を与えます。CPC(クリック単価)やCPA(成果単価)などのKPIを達成するために、モデルの構築・改善を行います。また、リアルタイムオークションにおける各種ロジックは、ビジネス上の意思決定を自動化する重要な役割を果たします。ビジネスサイドと協力してビジネス課題を解決し、具体的な施策を提案し、その実現に向けたロードマップを策定します。 ▼プロダクトの技術課題へのアプローチ 以下のような技術的な課題に対処し、プロダクトの品質向上に貢献します。 入札価格の決定 広告リクエストの属性(メディアやユーザー情報など)と案件情報(ターゲティング情報など)を組み合わせて、最適な入札価格を決定します。入札価格を低く抑えることは広告効果の向上に直結します。 クリエイティブ選択 数あるクリエイティブの中から、効果的な(クリック率が高いなど)ものを選択します。 働く環境 ▼低レイテンシーな機械学習システム DSPでは、リクエストあたり100ms程度でレスポンスを返す必要があります。機械学習モデルが推論に使える時間は10ms程度です。低レイテンシーな機械学習システムを開発したいエンジニアは挑戦しがいのある環境です。 ▼Snowflakeやdbtを活用したモダンなデータ基盤 デジタル広告においてデータは命です。データ分析やモデル構築などにおいてデータを中心に意思決定をします。データ基盤チームは、配信ログなどのデータについてデータ品質を担保してくれます。プロダクトチームのエンジニアはdbtを使用して簡単に分析・学習用のデータを抽出する環境が整っています。データ基盤チームは機械学習エンジニアがその専門性を最大限に活かすサポートをします。 データ基盤については以下に詳しくまとめているので、よろしければご覧ください。 Snowflakeの力を引き出すためのdbtを活用したデータ基盤開発の全貌 Snowflakeと共に過ごした一年間。その進化過程と未来へのVision データ基盤Visionの進化の軌跡-事業の成長と共に歩んだ道のり ▼多様なバックグラウンドを持つプロダクトチーム DSPのロジックの開発は、ソフトウェアエンジニアから構成されるプロダクトチームと機械学習エンジニア・データサイエンティストのロジックチームに分かれていました。しかし、ドメインナレッジやコンテキストを素早く共有できるよう、DSPにおけるロジック開発を行う機械学習エンジニア・データサイエンティストはプロダクトチームの一員としました。ソフトウェアエンジニアと強く協業することで素早く価値を発揮するチーム体制です。 CARTA MARKETING FIRMのデータサイエンス、データエンジニアリング基盤の変遷に迫る - CARTA TECH BLOG 業務上触れる分野や技術スタックについて ▼分野 機械学習 統計学 数理最適化 オンライン意思決定 制御工学 オークション理論 ゲーム理論 因果推論、計量経済学 ▼スタック Python, Kotlin(一部のみ) AWS dbt, Snowflake Prefect Terraform GitHub Slack 求めるスキル ▼必須スキル 統計モデリングや機械学習を用いた一連の実務経験(仮説構築・モデル構築・効果検証)に関する5年以上の経験 デジタル広告に関連する分野(レコメンドなど)の開発に携わった経験 ▼歓迎スキル デジタル広告に対するドメイン知識 ビジネス視点の仮説検証やロードマップを策定する能力 テックリードなど、開発チームを率いた経験 学会やカンファレンスなどの登壇経験 Kaggleなどの機械学習コンペティションの入賞経験 選考フロー 書類選考 1次面接: エンジニア・データサイエンティスト 2次面接: CARTA MARKETING FIRM CTO・エンジニア 最終面接: CARTA MARKETING FIRM 代表取締役・取締役・人事 ※上記をベースに選考回数は増減する可能性があります ※入社後のオンボーディング、就業支援を行う観点から選考の途中で適性検査を実施いたします ※選考の途中で、バックグラウンドチェック(リファレンスチェック/コンプライアンスチェック)を実施する場合がございます 続きを見る
-
【アナリティクスエンジニア】データ活用の可能性を引き出し、新たな価値創造に挑戦
事業概要 CARTA MARKETING FIRM は、2023年10月に4社統合により誕生した企業です。2025年にはさらなる統合を予定しており、デジタル広告からリアルイベントまで、幅広いマーケティングソリューションを提供しています。 全社的なデータドリブン経営への転換を進めるため、VPoD(Vice President of Data)ポジションを新設しました。データを経営の重要リソースと位置づけ、新たな価値創造に取り組んでいます。 具体的な戦略と目標については、データドリブン経営への転換 をご覧ください。 募集背景 当社では、Snowflakeをベースとしたデータ基盤の整備により、データ活用が急速に進展しています。 この勢いを最大限に活かし、組織横断的なデータ活用と戦略的なデータ活用を実現するため、データドリブンを軸としたエンジニアの採用を決定しました。 今回、データを通じた価値創出に主体的に取り組み、組織全体のデータ活用戦略の立案から実装までを担える方を募集します。 私たちと共に、統合によって広がるデータの可能性を最大限に引き出す挑戦に取り組みませんか。 データ基盤の詳細については、データ基盤Visionの進化の軌跡-事業の成長と共に歩んだ道のり をご参照ください。 業務内容 データチームのミッション 事業の成長を加速させるレバレッジとなることをミッションとしています。 CARTA MARKETING FIRMの中核のビジネスとなるデジタル広告事業においては、ほぼ全ての業務がソフトウェア上で完結するため、データ活用は事業の成否を左右する重要な要素です。 広告プラットフォームの管理画面データ、レポーティング、分析、機械学習の訓練など、データに関連する業務は多岐にわたります。 私たちが構築・運用する分析基盤「Vision」は、これらのデータ活用の中核を担っています。 効率的なデータ基盤の構築は組織全体の生産性向上に直結し、逆に不適切な設計は全てのデータ業務の足かせとなり得ます。 このような挑戦的な環境の中で、私たちは常に先手を打ち、ビジネスの急速な変化に対応できる柔軟な基盤づくりに注力しています。データを通じて事業に貢献し、組織の意思決定を支える存在として、さらなる進化を目指しています。 アナリティクスエンジニアとしてのメイン業務 一言で表すなら、データを価値に転換する役割です。 現在、特に注力している主要なトピックは以下の通りです。 ▼データ活用戦略の立案と実行 組織を横断する立場から、各部門のデータニーズを把握し、効果的なデータ活用戦略を立案・実行していただきます。 プロダクト部門、事業部門、経営層など、様々な関係者と協働しながら、データに基づいた意思決定の質を高めることを目指します。 ▼データの信頼性・利便性の向上 増加する多様なデータソースを、使いやすく価値の高いデータマートとして整備していただきます。データの品質管理や効率的な開発プロセスの確立など、基盤としての信頼性と拡張性を両立させることを期待しています。 このポジションの魅力 ▼組織変革を主導するデータの中核ポジション 複数事業の統合により組織が拡大し、事業領域が広がる中で、組織の複雑性も増しています。 このタイミングだからこそ、データに基づく意思決定の重要性が高まっており、組織全体のデータ活用を中心的な立場から推進できます。 データを活用した組織変革の最前線で、大きな影響を与えられるポジションです。 ▼経営リソースとしてのデータ活用を推進 新設されたVPoD(Vice President of Data)と直接連携し、経営の意思決定に必要なデータの構築を推進していきます。 全社のデータドリブン経営への転換において中心的な役割を担うことができます。 私達が求めるアナリティクスエンジニア ▼必須スキル、経験 SQLを用いたデータモデリングや分析用データの設計・開発経験 分析基盤やBIツールを活用したデータ可視化の実装経験 事業部門と協働したデータ活用推進の経験 ▼歓迎スキル、経験 財務会計、管理会計の知識 マスターデータ管理の実務経験 チームマネジメント経験 Snowflakeの実務経験 dbtの実務経験 BIツールの導入・運用経験 データガバナンスやデータ品質管理の知見 デジタル広告やマーケティング領域での実務経験 ▼志向性 実際のビジネス価値創出への意欲 手法より成果を重視する姿勢 実装への積極的な関与 チームでの協働を重視する姿勢 業務で触れる事になる手法・技術スタック ディメンショナルモデリング ディメンショナル・モデリング dbt 広告レポーティング基盤に、dbtを導入したら別物になった話 データウェアハウス層は、 最初から作らないで良いって本当? Snowflake アドテクのビッグデータを制するSnowflakeの力 [プレスリリース]「2024 Snowflake Data Superheroes!」にCARTA MARKETING FIRMのエンジニア 近森 淳平が選出 Python Fivetran [事例] FivetranでAuroraデータの連携を数週間で実現した株式会社Zucks Terraform 選考フロー 書類選考 1次面接: CARTA MARKETING FIRM VPoD 2次面接: CARTA MARKETING FIRM CTO・データアナリスト 最終面接: CARTA MARKETING FIRM 代表取締役・取締役・人事 ※上記をベースに選考回数は増減する可能性があります ※入社後のオンボーディング、就業支援を行う観点から、1次面接の段階で適性検査を実施いたします ※選考の途中で、バックグラウンドチェック(リファレンスチェック/コンプライアンスチェック)を実施する場合がございます 続きを見る
-
【データエンジニア】データの源泉から価値創造までエンジニアリングする
事業概要 CARTA MARKETING FIRM は、2023年10月に4社統合により誕生した企業です。2025年にはさらなる統合を予定しており、デジタル広告からリアルイベントまで、幅広いマーケティングソリューションを提供しています。 全社的なデータドリブン経営への転換を進めるため、VPoD(Vice President of Data)ポジションを新設しました。データを経営の重要リソースと位置づけ、新たな価値創造に取り組んでいます。 具体的な戦略と目標については、データドリブン経営への転換 をご覧ください。 募集背景 当社では、Snowflakeをベースとしたデータ基盤の整備により、データ活用が急速に進展しています。 この勢いを最大限に活かし、組織横断的なデータ活用と戦略的なデータ活用を実現するため、データドリブンを軸としたエンジニアの採用を決定しました。 今回、データを通じた価値創出に主体的に取り組み、組織全体のデータ活用戦略の立案から実装までを担える方を募集します。 私たちと共に、統合によって広がるデータの可能性を最大限に引き出す挑戦に取り組みませんか。 データ基盤の詳細については、データ基盤Visionの進化の軌跡-事業の成長と共に歩んだ道のり をご参照ください。 業務内容 データチームのミッション 事業の成長を加速させるレバレッジとなることをミッションとしています。 CARTA MARKETING FIRMの中核のビジネスとなるデジタル広告事業においては、ほぼ全ての業務がソフトウェア上で完結するため、データ活用は事業の成否を左右する重要な要素です。 広告プラットフォームの管理画面データ、レポーティング、分析、機械学習の訓練など、データに関連する業務は多岐にわたります。 私たちが構築・運用する分析基盤「Vision」は、これらのデータ活用の中核を担っています。 効率的なデータ基盤の構築は組織全体の生産性向上に直結し、逆に不適切な設計は全てのデータ業務の足かせとなり得ます。 このような挑戦的な環境の中で、私たちは常に先手を打ち、ビジネスの急速な変化に対応できる柔軟な基盤づくりに注力しています。データを通じて事業に貢献し、組織の意思決定を支える存在として、さらなる進化を目指しています。 データエンジニアとしてのメイン業務 ▼データ基盤「Vision」の設計・実装・運用を一気通貫で推進 当社の「Vision」は、Snowflakeを中核に据えたデータ基盤です。 弊社が提供しているアドネットワーク、DSP、アフィリエイトなど、複数の広告プロダクトから日々生成される大規模データを収集し、ビジネスの意思決定を支える重要なインフラとして機能しています。 基盤チームは事業部門のデータ活用を支援する立場として、日々改善を重ねています。ビジネスの進化に合わせて基盤自体も進化し続けています。 中央集権体制からDataOpsへの転換 DataOps実現への道筋 持続可能な運用体制の構築 ▼データの源泉から価値を創造する 当社のデータエンジニアは、単にデータを処理する基盤を作るだけではありません。時には、価値あるデータが生まれる仕組みづくりから携わります。 真に価値のあるデータ活用を実現するには、源泉となるデータそのものの品質を高めることが重要と考えています。 システムからどのようなデータが生成されるべきか、そのデータをどのような形式で保存すれば後の活用がしやすいのか。プロダクトチームと共に議論を重ねながら、データの設計から関与していきます。 このポジションの魅力 「事業をデータエンジニアリングする」 この言葉に共感していただける方にとって、私たちの環境は大きな可能性を秘めています。 ▼データドリブン経営のインフラを作る 2023年10月の4社統合を経て、CARTA MARKETING FIRMは、データドリブン経営への転換を強く推進しています。 このポジションでは、全社のデータドリブン化を技術で支えるコアメンバーとして、経営の意思決定に直接的な影響を与えることができます。技術的なチャレンジだけでなく、事業戦略に直結するデータ基盤の構築に携われる点が、大きな魅力となっています。 ▼大規模で価値あるデータを扱える 私たちの広告プロダクトからは、日々膨大なデータが生成されています。広告配信ログ、クリックログ、コンバージョンデータなど、そのデータの種類も多岐にわたります。 このような大規模データを効率的に処理するため、私たちは最新のデータ技術(Snowflake、dbt、Fivetranなど)を積極的に活用しています。広告業界特有の大量で複雑なデータへの挑戦を通じて、技術者としての経験値を高められる環境が整っています。 私達が求めるデータエンジニア ▼必須スキル、経験 SQLを使った開発・運用経験 AWSや GCPなどを用いたクラウド上での開発・運用経験 DWHを用いたデータ基盤の構築・運用経験(特にSnowflake) データパイプラインの構築・運用経験(特にdbt) ▼歓迎スキル、経験 データ品質管理経験 ディメンショナルモデリングの理解と実装経験 Terraformを使ったIaC開発・運用経験 データオブザーバビリティツール活用経験 時系列データの処理・分析経験 組織を横断したプロジェクト経験 CI/CDの構築・運用経験 ▼志向性 実際のビジネス価値創出への意欲 手法より成果を重視する姿勢 実装への積極的な関与 チームでの協働を重視する姿勢 業務で触れる事になる手法・技術スタック ディメンショナルモデリング ディメンショナル・モデリング dbt 広告レポーティング基盤に、dbtを導入したら別物になった話 データウェアハウス層は、 最初から作らないで良いって本当? Snowflake アドテクのビッグデータを制するSnowflakeの力 [プレスリリース]「2024 Snowflake Data Superheroes!」にCARTA MARKETING FIRMのエンジニア 近森 淳平が選出 Python Fivetran [事例] FivetranでAuroraデータの連携を数週間で実現した株式会社Zucks Terraform 選考フロー 書類選考 1次面接: CARTA MARKETING FIRM VPoD 2次面接: CARTA MARKETING FIRM CTO・データアナリスト 最終面接: CARTA MARKETING FIRM 代表取締役・取締役・人事 ※上記をベースに選考回数は増減する可能性があります ※入社後のオンボーディング、就業支援を行う観点から、1次面接の段階で適性検査を実施いたします ※選考の途中で、バックグラウンドチェック(リファレンスチェック/コンプライアンスチェック)を実施する場合がございます 続きを見る
-
【データエンジニア】運用型テレビCMサービスを支えるデータ分析基盤の構築・運用!
事業/プロダクトについて ▼事業について CARTA HOLDINGS(カルタホールディングス)の子会社であるテレシーは、テレビCMを中心としたマーケティングコミュニケーション領域のサポートを通じて、クライアントの事業成長のために伴走していくエージェンシーです。言われたことをやるのではなく、クライアント課題を共に発見し、その解決策(ソリューション)を提示します。そのための各種調査、戦略立案、各種企画、それら全てのプロデュース&エグゼキューションまでを、パートナーとしてクライアントに寄り添って行います。 ▼開発プロダクトについて テレシー開発チームでは、テレビCMの効果を分かりやすく可視化・分析できるプロダクト「テレシーアナリティクス」の開発に注力しています。このプロダクトにより、大手広告主が時間と労力をかけて行っていたテレビCM効果の分析が、短時間で簡易に行えるようになりました。 その結果、これまでテレビCMを実施したことのないスタートアップ企業や、効果改善に満足できず費用対効果を高められないままテレビCMの実施を止めてしまった広告主の課題が幅広く解消され、テレビCMの出稿機会が増加しました。今後は、さらなる分析精度の向上、取り扱いデータの増加、新たなCM効果分析手法の研究開発を通じて、顧客に選ばれるプロダクト作りを進めてまいります。 業務内容 ▼お任せする業務 Snowflakeでのデータパイプラインの構築・運用 dbtを用いたデータモデリングの設計・実装 データ品質における基準の策定・モニタリング BIダッシュボードの開発・運用 各種設計におけるドキュメント作成 ▼募集背景 テレシーは2021年創業以来、急速成長を遂げています。取り扱うデータの量と種類が増加する中、データエンジニアリング体制の強化が必要となりました。広告主様に高品質なデータ分析サービスを提供するため、データ分析基盤の構築・運用およびDataOpsの推進を担っていただける方を募集しています。 ▼やりがい 近年の広告市場では、プライバシーへの配慮やOOHメディア(屋外広告)をデジタル広告と同様に評価するニーズの高まりに伴い、統計的手法を活用したプロダクトが注目されています。 広告効果をより正確に測定・推定し、そのデータを基に企業のマーケティング戦略を改善することで、各産業の成長に貢献できるプロダクトの開発が可能です。 中長期的には、新規プロダクトとして、テレビCMとインターネット広告を統合的分析が行える製品まで広げていく予定です。 テレシーでは、優秀なエンジニアに幅広いキャリアアップチャンスを提供しています。個人の考え方に合わせて、スペシャリスト、プレイングマネージャー等を選択いただける環境となっています。 開発組織について テレシーの開発組織は、業務に向き合う際、ソフトウェアエンジニア、データサイエンティスト、プロダクトマネージャーの役職を問わず、常にフラットであるように心がけています。業務を遂行する際、誰かの指示を待たずに開発を行うという点を大事にしています。 誰かが仕様を決めて、それをただ実装する人はチームにいません。 以下のような開発ライフサイクルを一貫して行うことがほとんどです。 ヒアリング、調査 意思決定 実装、テスト デプロイ モニタリング 改善 もちろん得意・不得意な領域は当然あるので、メンバー同士でお互いにフォローし合いながら、チームとして前に進むように心がけています。 ▼開発環境 モダンデータスタック: Snowflake, dbt, Holistics 言語: Python RDBMS: Amazon Aurora(MySQL) 構成管理: Terraform コンテナ管理: Docker CI/CD: GitHub Actions コード管理: GitHub コミュニケーション: Slack, Google Meet etc. 参考記事 (外部リンク) テックブログ リーンなソリューション開発を支えるためのデータ組織戦略 インタビュー記事 「その開発は本当に必要?」運用型テレビCMを提供するテレシーの徹底的に“Why”を深ぼる開発カルチャーと仕組みとは YouTube 【t_wada CARTA探訪】今話題の運用型テレビCM「テレシー」を支える技術 応募要件 ▼求める人物像 CARTA Tech Vision に共感していただける方 抽象度の高い課題に対して、自ら考え、行動できる方 ▼必須スキル データ関連の実務経験5年以上 データエンジニア・データサイエンティスト・データアナリストなど データウェアハウスの構築・運用経験3年以上 データモデリングの設計・実装経験 gitなどのバージョン管理ツールを用いたチーム開発経験 ▼歓迎スキル ELT/ETL処理の設計・実装経験 BIツールを用いた分析経験 MySQLやRDBMSを用いた開発経験 Pythonを用いたアプリケーション開発経験 機械学習を組み込んだシステムの構築経験 選考フロー 書類選考 : 開発部 部長 1次面接 : 開発部 チームリーダー 2次面接 : 開発本部 本部長 ・部長 最終面接 : 取締役会長・代表取締役社長・人事 ※上記をベースに選考回数は増減する可能性があります ※選考の途中で性格適性検査を実施いたします ※選考の途中で、バックグラウンドチェック(リファレンスチェック/コンプライアンスチェック)を実施する場合がございます 続きを見る
全 4 件中 4 件 を表示しています